## Tuesday, September 25, 2012

### ME2254 STRENGTH OF MATERIALS SYLLABUS | ANNA UNIVERSITY BE AUTOMOBILE ENGINEERING 4TH SEM SYLLABUS REGULATION 2008 2011 2012-2013

Latest: TNEA 2014 Engineering Application Status, Counselling Date, Rank List
ME2254 STRENGTH OF MATERIALS SYLLABUS | ANNA UNIVERSITY BE AUTOMOBILE ENGINEERING 4TH SEM SYLLABUS REGULATION 2008 2011 2012-2013 BELOW IS THE ANNA UNIVERSITY FOURTH SEMESTER BE AUTOMOBILE ENGINEERING DEPARTMENT SYLLABUS, TEXTBOOKS, REFERENCE BOOKS,EXAM PORTIONS,QUESTION BANK,PREVIOUS YEAR QUESTION PAPERS,MODEL QUESTION PAPERS, CLASS NOTES, IMPORTANT 2 MARKS, 8 MARKS, 16 MARKS TOPICS. IT IS APPLICABLE FOR ALL STUDENTS ADMITTED IN THE YEAR 2011 2012-2013 (ANNA UNIVERSITY CHENNAI,TRICHY,MADURAI,TIRUNELVELI,COIMBATORE), 2008 REGULATION OF ANNA UNIVERSITY CHENNAI AND STUDENTS ADMITTED IN ANNA UNIVERSITY CHENNAI DURING 2009

ME2254 STRENGTH OF MATERIALS L T P C
(Common to Mechanical, Automobile & Production) 3 1 0 4
OBJECTIVES
 To gain knowledge of simple stresses, strains and deformation in components due to
 To assess stresses and deformations through mathematical models of beams,
twisting bars or combinations of both.
 Effect of component dimensions and shape on stresses and deformations are to be
understood.
 The study would provide knowledge for use in the design courses
UNIT I STRESS STRAIN DEFORMATION OF SOLIDS 9
Rigid and Deformable bodies – Strength, Stiffness and Stability – Stresses; Tensile,
Compressive and Shear – Deformation of simple and compound bars under axial load –
Thermal stress – Elastic constants – Strain energy and unit strain energy – Strain energy
UNIT II BEAMS - LOADS AND STRESSES 9
Types of beams: Supports and Loads – Shear force and Bending Moment in beams –
Cantilever, Simply supported and Overhanging beams – Stresses in beams – Theory of
simple bending – Stress variation along the length and in the beam section – Effect of
shape of beam section on stress induced – Shear stresses in beams – Shear flow
UNIT III TORSION 9
Analysis of torsion of circular bars – Shear stress distribution – Bars of Solid and hollow
circular section – Stepped shaft – Twist and torsion stiffness – Compound shafts – Fixed
and simply supported shafts – Application to close-coiled helical springs – Maximum
shear stress in spring section including Wahl Factor – Deflection of helical coil springs
under axial loads – Design of helical coil springs – stresses in helical coil springs under
37
UNIT IV BEAMDEFLECTION 9
Elastic curve of Neutral axis of the beam under normal loads – Evaluation of beam
deflection and slope: Double integration method, Macaulay Method, and Moment-area
Method –Columns – End conditions – Equivalent length of a column – Euler equation –
Slenderness ratio – Rankine formula for columns
UNIT V ANALYSIS OF STRESSES IN TWO DIMENSIONS 9
Biaxial state of stresses – Thin cylindrical and spherical shells – Deformation in thin
cylindrical and spherical shells – Biaxial stresses at a point – Stresses on inclined plane
– Principal planes and stresses – Mohr’s circle for biaxial stresses – Maximum shear
stress - Strain energy in bending and torsion.
TUTORIALS 15 TOTAL: 60 PERIODS
TEXT BOOKS
1. Popov E.P, “Engineering Mechanics of Solids”, Prentice-Hall of India, New Delhi,
1997
2. Beer F. P. and Johnston R,” Mechanics of Materials”, McGraw-Hill Book Co, Third
Edition, 2002.
REFERENCES
1. Nash W.A, “Theory and problems in Strength of Materials”, Schaum Outline Series,
McGraw-Hill Book Co, New York, 1995
2. Kazimi S.M.A, “Solid Mechanics”, Tata McGraw-Hill Publishing Co., New Delhi,
1981.
3. Ryder G.H, “Strength of Materials, Macmillan India Ltd”., Third Edition, 2002
4. Ray Hulse, Keith Sherwin & Jack Cain, “Solid Mechanics”, Palgrave ANE Books,
2004.
5. Singh D.K “Mechanics of Solids” Pearson Education 2002.
6. Timoshenko S.P, “Elements of Strength of Materials”, Tata McGraw-Hill, New Delhi,
1997.