Trending: Anna University 8th Sem Results April 2014 May/June 2014 Time Table/ Internal Marks Calculate CGPA Online SSLC Results 2014 12th Result 2014

Test Footer 1

Monday, July 30, 2012

EE2401 POWER SYSTEM OPERATION AND CONTROL SYLLABUS | ANNA UNIVERSITY BE EEE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012

Latest: TNEA 2014 Engineering Application Status, Counselling Date, Rank List
EE2401 POWER SYSTEM OPERATION AND CONTROL SYLLABUS | ANNA UNIVERSITY BE EEE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012 BELOW IS THE ANNA UNIVERSITY SEVENTH SEMESTER B.E. ELECTRICAL AND ELECTRONICS ENGINEERING DEPARTMENT SYLLABUS IT IS APPLICABLE FOR ALL STUDENTS ADMITTED IN THE YEAR 2011-2012 (ANNA UNIVERSITY CHENNAI,TRICHY,MADURAI,TIRUNELVELI,COIMBATORE), 2008 REGULATION OF ANNA UNIVERSITY CHENNAI AND STUDENTS ADMITTED IN ANNA UNIVERSITY CHENNAI DURING 2009

EE2401 POWER SYSTEM OPERATION AND CONTROL L T P C
3 0 0 3
AIM:
To understand the day to day operation of power system and the control actions to be implemented
on the system to meet the minute-to-minute variation of system load demand.
OBJECTIVES:
i. To have an overview of power system operation and control.
ii. To model power-frequency dynamics and to design power-frequency controller.
iii. To model reactive power-voltage interaction and the control actions to be implemented for
maintaining the voltage profile against varying system load.
UNIT I INTRODUCTION 9 System load – variation - load characteristics - load curves and load-duration curve (daily,
weekly and annual) - load factor - diversity factor. Importance of load forecasting and simple
techniques of forecasting. An overview of power system operation and control and the role of
computers in the implementation. (Qualitative treatment with block diagram).
UNIT II REAL POWER - FREQUENCY CONTROL 9 Basics of speed governing mechanism and modeling - speed-load characteristics – load sharing
between two synchronous machines in parallel. Control area concept LFC control of a singlearea
system. Static and dynamic analysis of uncontrolled and controlled cases. Integration of
economic dispatch control with LFC. Two-area system – modeling - static analysis of uncontrolled
case - tie line with frequency bias control of two-area system - state variable model.
UNIT III REACTIVE POWER–VOLTAGE CONTROL 9 Basics of reactive power control. Excitation systems – modeling. Static and dynamic analysis -
stability compensation - generation and absorption of reactive power. Relation between voltage,
power and reactive power at a node - method of voltage control - tap-changing transformer. System
level control using generator voltage magnitude setting, tap setting of OLTC transformer and
MVAR injection of switched capacitors to maintain acceptable voltage profile and to minimize
transmission loss.
UNIT IV UNIT COMMITMENT AND ECONOMIC DISPATCH 9 Statement of economic dispatch problem – cost of generation – incremental cost curve co-ordination
equations without loss and with loss, solution by direct method and λ-iteration method. (No
derivation of loss coefficients). Statement of Unit Commitment problem – constraints; spinning
reserve, thermal unit constraints, hydro constraints, fuel constraints and other constraints. Solution
methods - Priority-list methods - forward dynamic programming approach. Numerical
problems only in priority-list method using full-load average production cost.
UNIT V COMPUTER CONTROL OF POWER SYSTEMS 9
Need of computer control of power systems. Concept of energy control centre (or) load dispatch
centre and the functions - system monitoring - data acquisition and control. System hardware
configuration – SCADA and EMS functions. Network topology - state estimation - security analysis
and control. Various operating states (Normal, alert, emergency, in-extremis and restorative). State
transition diagram showing various state transitions and control strategies.
TOTAL : 45 PERIODS

EE2401 POWER SYSTEM OPERATION AND CONTROL L T P C
3 0 0 3
AIM:
To understand the day to day operation of power system and the control actions to be implemented
on the system to meet the minute-to-minute variation of system load demand.
OBJECTIVES:
i. To have an overview of power system operation and control.
ii. To model power-frequency dynamics and to design power-frequency controller.
iii. To model reactive power-voltage interaction and the control actions to be implemented for
maintaining the voltage profile against varying system load.
UNIT I INTRODUCTION 9 System load – variation - load characteristics - load curves and load-duration curve (daily,
weekly and annual) - load factor - diversity factor. Importance of load forecasting and simple
techniques of forecasting. An overview of power system operation and control and the role of
computers in the implementation. (Qualitative treatment with block diagram).
UNIT II REAL POWER - FREQUENCY CONTROL 9 Basics of speed governing mechanism and modeling - speed-load characteristics – load sharing
between two synchronous machines in parallel. Control area concept LFC control of a singlearea
system. Static and dynamic analysis of uncontrolled and controlled cases. Integration of
economic dispatch control with LFC. Two-area system – modeling - static analysis of uncontrolled
case - tie line with frequency bias control of two-area system - state variable model.
UNIT III REACTIVE POWER–VOLTAGE CONTROL 9 Basics of reactive power control. Excitation systems – modeling. Static and dynamic analysis -
stability compensation - generation and absorption of reactive power. Relation between voltage,
power and reactive power at a node - method of voltage control - tap-changing transformer. System
level control using generator voltage magnitude setting, tap setting of OLTC transformer and
MVAR injection of switched capacitors to maintain acceptable voltage profile and to minimize
transmission loss.
UNIT IV UNIT COMMITMENT AND ECONOMIC DISPATCH 9 Statement of economic dispatch problem – cost of generation – incremental cost curve co-ordination
equations without loss and with loss, solution by direct method and λ-iteration method. (No
derivation of loss coefficients). Statement of Unit Commitment problem – constraints; spinning
reserve, thermal unit constraints, hydro constraints, fuel constraints and other constraints. Solution
methods - Priority-list methods - forward dynamic programming approach. Numerical
problems only in priority-list method using full-load average production cost.
UNIT V COMPUTER CONTROL OF POWER SYSTEMS 9
Need of computer control of power systems. Concept of energy control centre (or) load dispatch
centre and the functions - system monitoring - data acquisition and control. System hardware
configuration – SCADA and EMS functions. Network topology - state estimation - security analysis
and control. Various operating states (Normal, alert, emergency, in-extremis and restorative). State
transition diagram showing various state transitions and control strategies.
TOTAL : 45 PERIODS
76
TEXT BOOKS
1. Allen. J. Wood and Bruce F. Wollenberg, ‘Power Generation, Operation and Control’, John Wiley
& Sons, Inc., 2003.
2. Chakrabarti & Halder, “Power System Analysis: Operation and Control”, Prentice Hall of India,
2004 Edition.
REFERENCES
1. D.P. Kothari and I.J. Nagrath, ‘Modern Power System Analysis’, Third Edition, Tata McGraw Hill
Publishing Company Limited, New Delhi, 2003. (For Chapters 1, 2 & 3)
2. L.L. Grigsby, ‘The Electric Power Engineering, Hand Book’, CRC Press & IEEE Press, 2001.
3. Hadi Saadat, “Power System Analysis”, (For the chapters 1, 2, 3 and 4)11th Reprint
2007.
4. P.Kundur, ‘Power System Stability and Control’ MC Craw Hill Publisher, USA, 1994.
5. Olle.I.Elgerd, ‘Electric Energy Systems theory An introduction’ Tata McGraw Hill
Publishing Company Ltd. New Delhi, Second Edition 2003.

No comments:

Post a Comment

Any doubt ??? Just throw it Here...